183 research outputs found

    Assessing Evapotranspiration Estimates from the Global Soil Wetness Project Phase 2 (GSWP-2) Simulations

    Get PDF
    Abstract and PDF report are also available on the MIT Joint Program on the Science and Policy of Global Change website (http://globalchange.mit.edu/).We assess the simulations of global-scale evapotranspiration from the Global Soil Wetness Project Phase 2 (GSWP-2) within a global water-budget framework. The scatter in the GSWP-2 global evapotranspiration estimates from various land surface models can constrain the global, annual water budget fluxes to within ±2.5%, and by using estimates of global precipitation, the residual ocean evaporation estimate falls within the range of other independently derived bulk estimates. However, the GSWP-2 scatter cannot entirely explain the imbalance of the annual fluxes from a modern-era, observationally-based global water budget assessment, and inconsistencies in the magnitude and timing of seasonal variations between the global water budget terms are found. Inter-model inconsistencies in evapotranspiration are largest for high latitude inter-annual variability as well as for inter-seasonal variations in the tropics, and analyses with field-scale data also highlights model disparity at estimating evapotranspiration in high latitude regions. Analyses of the sensitivity simulations that replace uncertain forcings (i.e. radiation, precipitation, and meteorological variables) indicate that global (land) evapotranspiration is slightly more sensitive to precipitation than net radiation perturbations, and the majority of the GSWP-2 models, at a global scale, fall in a marginally moisture-limited evaporative condition. Finally, the range of global evapotranspiration estimates among the models is larger than any bias caused by uncertainties in the GSWP-2 atmospheric forcing, indicating that model structure plays a more important role toward improving global land evaporation estimates (as opposed to improved atmospheric forcing).NASA Energy and Water-cycle Study (NEWS, grant #NNX06AC30A), under the NEWS Science and Integration Team activities

    A Healthy Diet of Preemption: The Power of the FDA and the Battle Over Restricting High Fructose Corn Syrup From Food and Beverages Labeled \u27Natural\u27

    Get PDF
    America is unhealthy. America faces an obesity epidemic. The food consumed by Americans is making them fat. Americans, bombarded every single day by negative headlines like these, are becoming more and more health conscious. This newfound commitment to health is reflected in the food and beverages Americans purchase

    The Association of Large-Scale Climate Variability and Teleconnections on Wind Energy Resource over Europe and its Intermittency

    Get PDF
    In times of increasing importance of wind power in the world’s energy mix, this study focuses on a better understanding of the influences of large-scale climate variability on wind power resource over Europe. The impact of the North Atlantic Oscillation (NAO), the Arctic Oscillation (AO), the El Niño Southern Oscillation (ENSO) and the Atlantic Multidecadal Oscillation (AMO) are investigated in terms of their correlation with wind power density (WPD) at 80 m hub height. These WPDs are calculated based on the MERRA Reanalysis data set covering 31 years of measurements. Not surprisingly, AO and NAO are highly correlated with the time series of WPD. This correlation can also be found in the first principal component of a Principal Component Analysis (PCA) of WPD over Europe explaining 14% of the overall variation. Further, cross-correlation analyses indicates the strongest associated variations are achieved with AO/NAO leading WPD by at most one day. Furthermore, the impact of high and low phases of the respective oscillations has been assessed to provide a more comprehensive illustration. The fraction of WPD for high and low AO/NAO increases considerably for northern Europe, whereas the opposite pattern can be observed for southern Europe. Similar results are obtained by calculating the energy output of three hypothetical wind turbines for every grid point over Europe. Thus, we identified a high interconnection potential between wind farms in order to reduce intermittency, one of the primary challenges in wind power generation. In addition, we observe significant correlations between WPD and AMO

    A Global Land System Framework for Integrated Climate-Change Assessments

    Get PDF
    Abstract in HTML and technical report in PDF available on the Massachusetts Institute of Technology Joint Program on the Science and Policy of Global Change website (http://mit.edu/globalchange/www/).Land ecosystems play a major role in the global cycles of energy, water, carbon and nutrients. A Global Land System (GLS) framework has been developed for the Integrated Global Systems Model Version 2 (IGSM2) to simulate the coupled biogeophysics and biogeochemistry of these ecosystems, as well as the interactions of these terrestrial processes with the climate system. The GLS framework has resolved a number of water and energy cycling deficiencies and inconsistencies introduced in IGSM1. In addition, a new representation of global land cover and classification as well as soil characteristics has been employed that ensures a consistent description of the global land surface amongst all the land components of the IGSM2. Under this new land cover classification system, GLS is run for a mosaic of land cover types within a latitudinal band defined by the IGSM2 atmosphere dynamics and chemistry sub-model. The GLS shows notable improvements in the representation of land fluxes and states of water and energy over the previous treatment of land processes in the IGSM1. In addition, the zonal features of simulated carbon fluxes as well as key trace gas emissions of methane and nitrous oxide are comparable to estimates based on higher resolution models constrained by observed climate forcing. Given this, the GLS framework represents a key advance in the ability of the IGSM to faithfully represent coupled terrestrial processes to the climate system, and is well poised to support more robust two-way feedbacks of natural and managed hydrologic and ecologic systems with the climate and socio-economic components of the IGSM2.This study received support from the MIT Joint Program on the Science and Policy of Global Change, which is funded by a consortium of government, industry and foundation sponsors

    The Potential Wind Power Resource in Australia: A New Perspective

    Get PDF
    Australia is considered to have very good wind resources, and the utilization of this renewable energy resource is increasing. Wind power installed capacity increased by 35% from 2006 to 2011 and is predicted to account for over 12% of Australia’s electricity generation in 2030. This study uses a recently published methodology to address the limitations of previous wind resource analyses, and frames the nature of Australia’s wind resources from the perspective of economic viability, using robust metrics of the abundance, variability and intermittency of wind power density, and analyzes whether these differ with higher wind turbine hub heights. We also assess the extent to which wind intermittency can potentially be mitigated by the aggregation of geographically dispersed wind farms. Our results suggest that over much of Australia, areas that have high wind intermittency coincide with large expanses in which the aggregation of turbine output does not mitigate variability. These areas are also geographically remote, some are disconnected from the east coast’s electricity grid and large population centers, and often are not connected or located near enough to high capacity electricity infrastructure, all of which would decrease the potential economic viability of wind farms in these locations. However, on the eastern seaboard, even though the wind resource is weaker, it is less variable, much closer to large population centers, and there exists more potential to mitigate its intermittency through aggregation.The authors gratefully acknowledge the financial support for this work provided by the MIT Joint Program on the Science and Policy of Global Change through a number of federal agencies and industrial sponsors including US Department of Energy grant DE-FG02-94ER61937

    Adaptation Advantage to Climate Change Impacts on Road Infrastructure in Africa through 2100

    Get PDF
    The African continent is facing the potential of a US183.6billionliabilitytorepairandmaintainroadsdamagedfromtemperatureandprecipitationchangesrelatedtoclimatechangethrough2100.Asdetailed,thecentralpartofthecontinentfacesthegreatestimpactfromclimatechangewithcountriesfacinganaveragecostofUS183.6 billion liability to repair and maintain roads damaged from temperature and precipitation changes related to climate change through 2100. As detailed, the central part of the continent faces the greatest impact from climate change with countries facing an average cost of US22 million annually, if they adopt a proactive adaptation policy and a US$54 million annual average, if a reactive approach is adopted. Additionally, countries face an average loss of opportunity to expand road networks from a low of 22 per cent to a high of 235 per cent in the central region.infrastructure, climate change, roads, cost estimates

    Modeling Climate Feedbacks to Energy Demand: The Case of China

    Get PDF
    Abstract in HTML and technical report in PDF available on the Massachusetts Institute of Technology Joint Program on the Science and Policy of Global Change website (http://mit.edu/globalchange/www/).This paper is an empirical investigation of the effects of climate on the use of electricity by consumers and producers in urban and rural areas within China. It takes advantage of an unusual combination of temporal and regional data sets in order to estimate temperature, as well as price and income elasticities of electricity demand. The estimated positive temperature/electric power feedback implies a continually increasing use of energy to produce electric power which, in China, is primarily based on coal. In the absence of countervailing measures, this will contribute to increased emissions, increased atmospheric concentrations of greenhouse gases, and increases in greenhouse warming.This study received funding from the MIT Joint Program on the Science and Policy of Global Change, which is supported by a consortium of government, industry and foundation sponsors

    Modeling Water Withdrawal and Consumption for Electricity Generation in the United States

    Get PDF
    http://globalchange.mit.edu/research/publicationsWater withdrawals for thermoelectric cooling account for a significant portion of total water use in the United States. Any change in electrical energy generation policy and technologies has the potential to have a major impact on the management of local and regional water resources. In this report, a model of Withdrawal and Consumption for Thermo-electric Systems (WiCTS) is formalized. This empirically-based framework employs specific water-use rates that are scaled according to energy production, and thus, WiTCS is able to estimate regional water withdrawals and consumption for any electricity generation portfolio. These terms are calculated based on water withdrawal and consumption data taken from the United States Geological Survey (USGS) inventories and a recent NREL report. To illustrate the model capabilities, we assess the impact of a high-penetration of renewable electricity-generation technologies on water withdrawals and consumption in the United States. These energy portfolio scenarios are taken from the Renewable Energy Futures (REF) calculations performed by The U.S. National Renewable Energy Laboratory (NREL) of the U.S. Department of Energy (DOE). Results of the model indicate that significant reductions in water use are achieved under the renewable technology portfolio. Further experiments illustrate additional capabilities of the model. We investigate the impacts of assuming geothermal and concentrated solar power technologies employing wet cooling systems versus dry as well as assuming all wet cooling technologies use closed cycle cooling technologies. Results indicate that water consumption and withdrawals increase under the first assumption, and that water consumption increases under the second assumption while water withdrawals decrease.The authors gratefully acknowledge the financial support from and collaborative efforts with the National Renewable Energy Laboratory. The authors would also like to thank Joan Kenny and Molly Maupin from the United States Geological Survey for their help in clarifying some questions we had surrounding the data in the recent USGS water use report. The authors also gratefully acknowledge the financial support of the MIT Joint Program on the Science and Policy of Global Change through a consortium of industrial sponsors and Federal grants

    A Framework for Modeling Uncertainty in Regional Climate Change

    Get PDF
    In this study, we present a new modeling framework and a large ensemble of climate projections to investigate the uncertainty in regional climate change over the US associated with four dimensions of uncertainty. The sources of uncertainty considered in this framework are the emissions projections (using different climate policies), climate system parameters (represented by different values of climate sensitivity and net aerosol forcing), natural variability (by perturbing initial conditions) and structural uncertainty (using different climate models). The modeling framework revolves around the Massachusetts Institute of Technology (MIT) Integrated Global System Model (IGSM), an integrated assessment model with an intermediate complexity earth system model (with a two-dimensional zonal-mean atmosphere). Regional climate change over the US is obtained through a two-pronged approach. First, we use the IGSM-CAM framework which links the IGSM to the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM). Secondly, we use a pattern-scaling method that extends the IGSM zonal mean based on climate change patterns from various climate models. Results show that uncertainty in temperature changes are mainly driven by policy choices and the range of climate sensitivity considered. Meanwhile, the four sources of uncertainty contribute more equally to precipitation changes, with natural variability having a large impact in the first part of the 21st century. Overall, the choice of policy is the largest driver of uncertainty in future projections of climate change over the US.This work was partially funded by the US Environmental Protection Agency under Cooperative Agreement #XA-83600001. The Joint Program on the Science and Policy of Global Change is funded by a number of federal agencies and a consortium of 40 industrial and foundation sponsors. For a complete list of sponsors, see: http://globalchange.mit.edu. This research used the Evergreen computing cluster at the PaciïŹc Northwest National Laboratory. Evergreen is supported by the OfïŹce of Science of the US Department of Energy under Contract No. DE-AC05-76RL01830. The 20th Century Reanalysis V2 data was provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at http://www.esrl.noaa.gov/psd/

    Quantifying the Likelihood of Regional Cimate Change: A hybridized Approach

    Get PDF
    The growing need for risk-based assessments of impacts and adaptation to climate change calls for increased capability in climate projections: the quantification of the likelihood of regional outcomes and the representation of their uncertainty. Herein, we present a technique that extends the latitudinal projections of the 2-D atmospheric model of the MIT Integrated Global System Model (IGSM) by applying longitudinally resolved patterns from observations, and from climate-model projections archived from exercises carried out for the 4th Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC). The method maps the IGSM zonal means across longitude using a set of transformation coefficients, and we demonstrate this approach in application to near-surface air temperature and precipitation, for which high-quality observational datasets and model simulations of climate change are available. The current climatology of the transformation coefficients is observationally based. To estimate how these coefficients may alter with climate, we characterize the climate models’ spatial responses, relative to their zonal mean, from transient increases in trace-gas concentrations and then normalize these responses against their corresponding transient global temperature responses. This procedure allows for the construction of meta-ensembles of regional climate outcomes, combining the ensembles of the MIT IGSM—which produce global and latitudinal climate projections, with uncertainty, under different global climate policy scenarios—with regionally resolved patterns from the archived IPCC climate-model projections. This approach also provides a hybridization of the climate-model longitudinal projections with the global and latitudinal patterns projected by the IGSM, and can be applied to any given state or flux variable that has the sufficient observational and model-based information.U.S. Department of Energy’s Abrupt Climate Change program, grant # DE-FG02-08ER64597
    • 

    corecore